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The quantum-mechanically derived reaction coordinates

(QMRC) for the proton transfer in (N—H—N)+ hydrogen

bonds have been derived from ab initio calculations of

potential-energy surfaces. A comparison is made between

the QMRC and the corresponding bond-order reaction

coordinates (BORC) derived by applying the Pauling bond-

order concept together with the principle of conservation of

bond order. We find virtually perfect agreement between the

QMRC and the BORC for intermolecular (N—H—N)+

hydrogen bonds. In contrast, for intramolecular (N—H—N)+

hydrogen bonds, the donor and acceptor parts of the molecule

impose strong constraints on the N—N distance and the

QMRC does not follow the BORC relation in the whole range.

The X-ray determined hydrogen positions are not located

exactly at the theoretically calculated potential-energy

minima, but instead at the point where the QMRC and the

BORC coincide with each other. On the other hand, the

optimized hydrogen positions, with other atoms in the cation

fixed as in the crystal structure, are closer to these energy

minima. Inclusion of the closest neighbours in the theoretical

calculations has a rather small effect on the optimized

hydrogen positions. [Part I: Olovsson (2006). Z. Phys. Chem.

220, 797–810.]
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1. Introduction

In a series of different crystalline compounds, where the same

atoms X and Y are involved in the hydrogen bond X—H—Y,

the distribution of the proton positions observed will be a

result of perturbations of different magnitudes by the crys-

talline environment. However, the assembly of such points

may be assumed to be distributed close to the minimum

energy path for the transfer of a proton along this particular

kind of hydrogen bond of the isolated system. This is the

assumption behind the mapping of chemical reaction path-

ways from crystal structure data and which has been applied to

a variety of crystal structures by Dunitz and collaborators

(Dunitz, 1979; Bürgi & Dunitz, 1983). Based on this assump-

tion, the ideal correlation curve for a particular type of

hydrogen bond, X—H� � �Y, can evidently be chosen as the

minimum-energy proton-transfer path derived from the

theoretical potential-energy surface of the system in question.

The concept of bond order has been popular in chemistry

for a very long time and is often useful in ‘explaining’

systematic trends in the bond lengths in related compounds. In

the previous paper (Olovsson, 2006) Pauling’s bond-order

concept was applied together with the principle of conserva-

tion of bond order to derive a simple functional representation

of the interdependence of the X—H and H—Y distances in

hydrogen bonds.



This function is called the BORC, bond-order reaction

coordinate, in the following. Very good agreement between

the BORC and the reaction coordinates derived from the

quantum-mechanical calculations of potential-energy surfaces

(QMRC) was found for HF�2 , HCl�2 and H3O�2 , as well as for

H3.

It is of great interest to investigate the agreement between

the QMRC and the BORC for N—H—N hydrogen bonds

also. No theoretical potential-energy surfaces appear to be

available for this type of hydrogen bond (except for a simple

model system; Toh et al., 2001). In the present paper are

presented the reaction coordinates QMRC from quantum

mechanical calculations of potential-energy surfaces for a

series of organic salts in which the cations form inter- or

intramolecular (N—H—N)+ hydrogen bonds. Here 14 organic

compounds have been selected for the analysis. Although the

compounds are chemically quite different all N—N distances,

with one exception, are 2.6–2.7 Å (cf. Table 1). The data were

taken from the Cambridge Structural Database (CSD; Allen,

2002); as the formulae are sometimes very complicated, the

refcodes used in the database are also given in the figure texts.

All structures were determined by X-ray diffraction (no

neutron results are available for NHN hydrogen bonds). In six

of these the NHN hydrogen bonds are intermolecular, in eight

they are intramolecular.

2. Theoretical calculations

2.1. Potential-energy surfaces (PES)

Quantum chemical calculations were carried out at the

B3LYP/6-31G(d,p) level of theory using the Gaussian03

(Gaussian Inc., 2004) system. The crystallographically deter-

mined coordinates for all atoms, except for the H atom

involved in the hydrogen bond, were kept fixed and the

potential-energy surface was generated for nitrogen–

hydrogen distances successively changed in 0.04 Å steps. The

proton was then moved along the N1—H and N2—H direc-

tions, where these directions were defined by the nitrogen and

hydrogen positions taken from the structure determination.

For computational reasons only the two molecules directly

involved in the N—H—N hydrogen bonds are in most cases

included in the calculation. This hydrogen-bonded complex is

the cation with positive unit charge in each compound. The

closest anion neighbours (with all their electrons) have also

been included in the calculations for some of the simpler

compounds to study the influence on the PES surface.

research papers

Acta Cryst. (2007). B63, 650–662 Majerz and Olovsson � Proton-transfer paths in hydrogen bonds. II 651

Table 1
Geometry of the hydrogen bonds (Å, �).

X-ray data: estimated uncertainty: N� � �N 0.01, N—H 0.05 Å, NHN 5�.

N� � �N N—H H—N N—H� � �N

BECHOG 2.608 1.30 1.30 180
ROHTIR 2.620 1.31 1.31 180
XOMFIO 2.878 1.44 1.44 180
QUKXEZ 2.664 1.33 1.33 180
LEQHIY 2.674 1.34 1.34 180
RULFAF 2.658 1.33 1.33 180
YULTOO 2.700 1.35 1.35 177
SAKKEU 2.587 1.30 1.30 173
HIDSAO 2.566 1.31 1.31 157
FEGQOX 2.614 1.46 1.46 128
KAHRIU 2.650 1.33 1.33 175
GERZUY 2.555 1.30 1.29 160
WERZAU 2.573 1.32 1.32 156
JACSAH 2.602 1.31 1.31 169

Figure 1
BECHOG: Geometry and potential-energy diagrams for the cation in the
structure of bis(4-methylpyridine)hydrogen tetraphenylborate; space
group C/c (Glidewell & Holden, 1982). The crystalline fragment used
in the QM calculations is symmetric in this figure and all the subsequent
figures. The upper part of the figure shows the complex considered
explicitly in the QM calculations (methyl H atoms not shown) and the
potential energy E as a function of d = R(N1H) � R(N2H). The lower
figure shows the two-dimensional QM-derived potential-energy map as a
function of the N1—H and N2—H distances. Contour levels: 1, 2, 4, 8, 13,
17, 21, 42 and 84 kJ mol�1 (0.25, 0.50, 1, 2, 3, 4, 5, 10 and 20 kcal mol�1).



The minimum-energy proton-transfer path has been

derived by locating the points of lowest energy in the theo-

retical potential-energy diagram (‘the reaction coordinates’,

QMRC) and fitting a curve through these points.

The X-ray determined position of the H atom is marked in

the PES diagram as a filled circle; this position will be denoted

HXD in the following. As the structures have been determined

by X-ray diffraction at room temperature, and are also rather

complicated, these hydrogen positions are in many cases very

uncertain. We estimate that the errors in the positions in some

cases may amount to almost 0.05 Å.

2.2. Optimized hydrogen positions

The hydrogen position in the cation has also been opti-

mized, with all other atoms in the cation fixed as in the crystal

structure; the resulting hydrogen position is marked with a

triangle in the PES diagram. For some of the complexes the

closest anion neighbour has also been included (see above);

this optimized hydrogen position is marked in the diagram

with an unfilled circle. Furthermore, in GERZUY the two and

in HIDSAU ) the eight closest anions have also been included

(with all their electrons); these optimized hydrogen positions
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Figure 2
ROHTIR: The crystalline fragment (cation) taken from methylammo-
nium methylamine tetraphenylborate at 200 K; space group P�11 (Bock et
al., 1997). Contour levels as in Fig. 1.

Figure 3
XOMFIO: [Hydrogen bis(tris(4-aminophenyl)carbenium)] (�0-12-phos-
phato)tetracosakis(�0-2-oxo)dodecaoxo-dodecamolybdenum at 173 K;
space group P�11 (Liu et al., 2002). Contour levels as in Fig. 1.



are marked with a filled square in the diagrams (cf. figure

captions for details).

3. Bond order

Pauling (1947) introduced the idea that there is a simple

relation between bond length and ‘bond order’ or ‘bond

valence’. This concept appears to be quite useful in many cases

and attracts considerable interest even today (see e.g.

Grabowski, 2000; Steiner, 2002; Mohri, 2005; Oláh et al., 2006).

Several expressions for this relation have been proposed (cf.

Brown, 1992); the Pauling approach is as follows

dð�Þ � dð1Þ ¼ �d ¼ �a ln �; ð1Þ

where d(�) is the interatomic distance for a fractional bond

with bond order � and d(1) is the corresponding single bond

length. In a transfer reaction X—H + Y! X—H—Y! X +

H—Y, it is postulated that the sum (n) of the bond orders �1

and �2 for X—H and H—Y, respectively, will remain constant

along the reaction coordinate. We thus obtain

expð��d1=a1Þ þ expð��d2=a2Þ ¼ n: ð2Þ

For the reactants, d(�1) = d(X—H, free) and d(�2) =

d(H� � �Y,1), so that �1 = 1 and �2 = 0; for the products �1 = 0,

�2 = 1. In a hydrogen bond the bond order of the two chemical

bonds X—H and H—Y must add up to 1, so that �1 + �2 = 1 all

along the reaction coordinate. The form of this curve is thus

obtained from the Pauling relation under the condition that

�1 + �2 = 1. We will refer to the curve thus calculated as the

bond-order reaction coordinate (BORC).

Is it reasonable to assume that the sum of the bond orders

remains constant along the reaction coordinate? In the

previous paper (Olovsson, 2006) theoretical bond orders1

from ab initio quantum-mechanical calculations were reported

for the [F—H—F]� and [HO—H—OH]� systems using

Gaussian03. From the theoretical calculations different bond

orders may be derived and the definition of the bond order

varies. For the [F—H—F]� system the Wiberg bond orders

around the H atom vary from 0.645 to 0.660 (as F—H varies

from 0.92 to 1.12 Å). For the [HO—H—OH]� system the

bond orders are in the range 0.695–0.720. These results may be

taken as justification for the above assumption that the sum of

the bond order remains constant along the reaction coordi-

nate, although the sum differs from one. Note also that this

sum is not the same for the two systems tested (whereas it is

assumed to be the same, and equal to one, in all cases in the

Pauling approach). It may be remarked that the theoretically

derived bond orders depend not only on their definition, but

also on the partitioning of the electron density.

The selection of the parameters in the Pauling relation and

derivation of the bond-order reaction coordinates (BORC)

have been described in the previous paper (Olovsson, 2006).

For NHN bonds the following reference distances were

selected d(� = 1) = 1.014 Å (the spectroscopically determined

equilibrium N—H distance in gaseous ammonia; Herzberg,

1950), d(� = 0.5) = 1.30 Å (half of the shortest N—N distance

observed for linear and symmetric NHN bonds in crystals).

These values give a(N) = 0.413 Å. The BORC curve for NHN

bonds is obtained by plotting R(N1H) = 1.014–0.413ln(1 � �)

versus R(N2H) = 1.014–0.413ln�, with � taken in suitable small

steps.

4. Results

In the lower part of Figs. 1–14 the potential-energy surface

(PES) is presented as a function of the N1H and N2H distances
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Figure 4
QUKXEZ: Hydrogen diquinuclidine chloride thiourea solvate at 298 K;
space group C2/c (Yutronic et al., 2001). Contour levels as in Fig. 1.

1 In this work, theoretical bond order is the ‘Wiberg bond order’ in
Gaussian03 (Wiberg, 1968; Mayer, 1986). This is calculated by the natural
bond-orbital (NBO) analysis.



for the compounds studied here. The upper part of the figures

shows the complex considered explicitly in the quantum-

mechanical calculations and the potential energy E as a

function of d = R(N1H)� R(N2H). The contour lines of lowest

energy in the PES are sometimes not shown in sufficient detail

and the curves of E versus d then more clearly illustrate the

characteristic features of the hydrogen-transfer process and in

the case of double minimum potentials the relative energies of

these minima [plotting against d = R(N1H) � R(N2H) is

chosen to give symmetric plots with respect to the H position

in the middle of the bond when the environment is symmetric].

In a few cases E varies very strongly with d and a diagram with

a larger energy scale has then been inserted.

4.1. Intermolecular N—H—N hydrogen bonds

The potential-energy diagrams are shown in Figs. 1–6,

where the BORC curve is also drawn. The curve representing

the minimum-energy proton-transfer path, QMRC, deviates

< 0.01 Å from the BORC curve and is therefore not visible in

the diagrams.

In all the diagrams there are double minima, but (except in

Fig. 3) the X-ray-determined hydrogen positions, HXD, are

located at the saddle points according to the structure deter-

minations. This is unexpected as in the case of double minima

the H atom is often statistically distributed between the two

minima around the symmetry centre, resulting in two half-

hydrogen atoms in a diffraction study. However, in the present

cases there is a large uncertainty in the hydrogen positions and

furthermore the refinements of the X-ray data are not
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Figure 5
(a) LEQHIY: Bis(imidazole) 2-hydroxy-5,5-dimethyl-1,3,2-dioxaphosphorinane-2-sulfide; space group I2/m (Potrzebowski et al., 1998). Contour levels:
1, 2, 4, 8, 13, 21, 42, 63, 84, 125 kJ mol�1 (0.25, 0.50, 1, 2, 3, 5, 10, 15, 20 and 30 kcal mol�1). (b) LEQHIY with the closest anion (as shown) included in the
calculations.



reported in sufficient detail to decide if the possibility of off-

centred hydrogen positions has been tested. It is then inter-

esting to notice that the optimized hydrogen position

(triangle) is closer to one of the two energy minima (the

optimization makes no distinction between the two minima).

In Fig. 3 the HXD atom is very far from the energy minimum;

however, an extra H atom was also found in the experimental

Fourier-difference map at the midpoint of the bond and with

an occupancy of 0.5.

The strongest influence of the anion is seen for the inter-

molecular hydrogen bond in RULFAF and LEQHIY for

which the anion changes the general shape of the potential-

energy surface. In Figs. 5(a) and (b) (LEQHIY), the effect on

the PES of including the closest neighbour (a complicated

sulfide anion) in the calculations is demonstrated: the double

minimum is changed to a single minimum and shifted. The

corresponding results for RULFAF (Fig. 6) are very similar

(not shown). The purpose of these figures is only to demon-

strate the sensitivity of the PES and the proton position to the

immediate environment. Naturally it is not possible from these

results to draw any conclusions about the net effect if more

distant neighbours are included in the calculations.
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Figure 7
YULTOO: 1,12-Bis(dimethylamino)benzo(c)phenanthrene hydroiodide;
space group Pccn (Staab et al., 1995). Contour levels 4, 8, 13, 21, 42, 84,
125 and 293 kJ mol�1 (1, 2, 3, 5, 10, 20, 30 and 70 kcal mol�1). The straight
line fitted to the QMRC curve (dotted) has a slope of�1.08 (the equation
of the line is y = �1.08x + 2.83, where y = N1H and x = H—N2; R2 = 0.95).

Figure 6
RULFAF: catena-([�0-2-(1-aza-4-azoniabicyclo(2.2.2)octane](1,4-diazo-
niabicyclo(2.2.2)octane))-trichloro-nickel); space group R32 (Petrusenko
et al., 1997). Contour levels as in Fig. 5.



4.2. Intramolecular NH—N hydrogen bonds

The potential-energy diagrams for the selected intramole-

cular N—H—N hydrogen bonds are shown in Figs. 7–14. The

minimum-energy proton path QMRC is marked as a dotted

line and the BORC curve is drawn as a solid line. Here the

BORC curve does not follow the QMRC and only in the

central point does the BORC coincide with the QMRC. A

probable reason for this discrepancy is discussed below in x5.

As mentioned above, in all the intermolecular NHN hydrogen

bonds there are symmetric double minima in the PES. In

contrast, in the intramolecular NHN hydrogen bonds there is

only one lowest minimum.

In all cases the QMRC is approximately a straight line; the

slope of the fitted line is given in the figure text. A slope of

�1.00 means that as N—H is decreased the distance of H—N

is increased by the same amount to keep the N—N distance

constant. A value more negative than�1.00 means that as N—
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Figure 9
HIDSAO: 1,4,7,10-Tetra-azabicyclo(5.5.3)pentadecane dibromide
perchlorate at 120 K; space group Pnma (Springborg et al.,1995). Contour
levels 42, 84, 125, 209, 293, 418 and 502 kJ mol�1 (10, 20, 30, 50, 70, 100
and 120 kcal mol�1). The straight line fitted to the QMRC curve has a
slope of �0.79 (the equation of the line is y = �0.79x + 2.34, R2 = 1.00).
Note: in this case the unfilled circle corresponds to the optimized
hydrogen position with one ClO�4 and two Br� ions as closest neighbours.

Figure 8
SAKKEU: 1-Dimethylamino-9-dimethylammoniodibenzothiophene
tetrafluoroborate; space group C2/c (Staab, Hone & Krieger, 1988).
Contour levels 8, 21, 42, 84, 125, 209, 293, 418, 502 kJ mol�1 (2, 5, 10, 20,
30, 50, 70, 100 and 120 kcal mol�1). The straight line fitted to the QMRC
curve has a slope of �0.90 (the equation of the line is y = �0.90x + 2.83,
R2 = 0.95).



H is decreased the H—N distance only increases by a smaller

amount. This implies that the originally bent NHN bond will

become less bent. Correspondingly, when the slope is less

negative than �1.00 the NHN bond will become more bent as

the N—H distance is decreased (recall that the N—N distance

is kept constant in all cases).

Whereas the energy levels in all the PESs for intermolecular

hydrogen bonds are similar, those for intramolecular bonds

differ significantly from one complex to another. The most

drastic change in energy levels is seen in HIDSAO (Fig. 9).

Here the PES is characterized by a very narrow, elongated

minimum and for NH distances out of the minimum the

energy strongly increases, especially with shortening of the

NH distances. A similar shape of the PES is observed for

JACSAH (Fig. 14). In both cases the hydrogen-bonded proton

is located inside a cavity formed by three aliphatic chains

which influences its mobility in the hydrogen bond.

The next group of the PES with similar energy levels, lower

than for HIDSAO and JACSAH but still higher than for

intermolecular hydrogen bonds, is represented by SAKKEU,

KAHRIU and WERZAU (Figs. 8, 11 and 13). Also in these

cases the PES diagrams are characterized by one lowest

minimum. All these cations have a similar structure which is a

modification of a proton sponge.

For YULTOO, FEGQOX and GERZUY (Figs. 7, 10 and

12) the energy levels in the PES are close to those for the

intermolecular complexes. The hydrogen bond in FEGQOX is

far from linearity (NHN angle 128�) and this is reflected in the

PES diagram with one distinct minimum, which can be

reached for a limited range of NH distances. In such a bent

hydrogen bond the proton cannot easily move from the

central location. In this compound the QMRC and the BORC

have no common central point as in the other complexes. This

fact illustrates how far bent hydrogen bridges are from typical

hydrogen bonds. The drastic difference between the QMRC

and the BORC raises a question whether the interaction in

FEGQOX should be considered as a hydrogen bond

(although the N—N distance is only 2.61 Å). HXD is very far

from the N—N line and a strong interaction between the

electron clouds of the proton and the donor/acceptor is then

less likely. It may be pointed out that as a general principle the

proton can be located at the N—H distances at which the

QMRC coincides with the BORC. The central values of NH

both curves in FEGQOX are very far from each other and a

strong hydrogen bridge cannot be formed.

The influence of the anion (SCN�) on the intramolecular

hydrogen bond in WERZAU is significant (Figs. 13a and b),

despite the shielding of the proton by the methyl groups

around the N atoms. In the case of GERZUY (Figs. 12a and

b), the proton is located in the centre of the cation and the

presence of the anion (CF3SO�3 ) only makes one part of the

long minimum deeper. For KAHRIU (Figs. 11a and b) the Br�

ion does not influence the proton at all. Probably it is better

shielded by the big molecule and the methyl groups and thus

covers the space around the proton more effectively than in

WERZAU.

It could be expected that the PES diagram for GERZUY

(Fig. 12) would be similar to HIDSAO and JACSAH (Figs. 9

and 14) because of the similarity of the cation shape. However,

the potential energy for this cation changes in a lower range

and the minimum is less elongated. Small differences in the

shape of the hydrogen-bonded cation will evidently influence

the shielding and result in different possibilities of the proton

moving.

The PES diagram of the intramolecular hydrogen bond in

YULTOO (Fig. 7) is somewhat similar to the diagrams for

intermolecular hydrogen bonds. There is a second minimum in

the energy surface and the QMRC follows the BORC more

closely than in the other intramolecular complexes. Evidently

the proton has a larger freedom to move in YULTOO. The

intermolecular hydrogen bond can be considered as a typical
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Figure 10
FEGQOX: 1,2-Cyclopentadienyldibenzylimine; space group I41cd (Etkin
et al., 1998). Contour levels 4, 8, 13, 21, 42, 84, 125 and 293 kJ mol�1 (1, 2,
3, 5, 10, 20, 30 and 70 kcal mol�1). The straight line fitted to the QMRC
curve has a slope of �1.00 (the equation of the line is y = �1.00x + 2.95,
R2 = 0.99).



hydrogen bond, in which the QMRC curve is identical to the

BORC (the BORC is calculated without any constraints

except that the sum of the bond orders remains constant along

the reaction coordinate). The reason for the drastically

different appearance of the potential-energy diagrams for

intramolecular NHN bonds compared with the intermolecular

ones is clearly that the donor and acceptor parts of the

molecule impose strong constraints on the geometry of the

hydrogen bond.

The fitted straight line of the QMRC in YULTOO has the

lowest R2 compared with the other intramolecular complexes.

The R2 value can be used as a measure of the similarity

between the QMRC and BORC curves. If the QMRC is close

to a straight line R2 is close to one. When its shape becomes

similar to the BORC the value of R2 becomes lower. This is

very well seen for the series of investigated complexes. R2

changes from 1.00 for HIDSAO to 0.95 for YULTOO.

It is interesting to notice that the crystallographically

determined hydrogen positions (HXD, filled circles) are not

located exactly at the theoretically calculated potential-energy

minima but instead at the point where the QMRC and the

BORC coincide. In contrast, the optimized hydrogen positions

for the isolated cation (triangles), with other atoms in the

cation fixed as in the crystal structure, are closer to the energy

minima in the PES diagrams (except in FEGQOX, Fig. 10).

Inclusion of the closest neighbours in HIDSAU (Fig. 9) as well
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Figure 11
(a) KAHRIU: 2,20-Bis(dimethylamino)biphenyl hydrobromide monohydrate. Space group P21212 (Staab, Krieger & Hone, 1988). Contour levels 8, 21,
42, 84, 125, 209 and 293 kJ mol�1 (2, 5, 10, 20, 30, 50 and 70 kcal mol�1). The straight line fitted to the QMRC curve has a slope of�1.05 (the equation of
the line is y = �1.05x + 2.74, R2 = 0.98). (b) KAHRIU with the closest neighbour (Br�) included in the calculations.



as in GERZUY (Figs. 12a and b) has almost no influence on

the optimized positions. For HIDSAU with one ClO�4 and two

Br� ions as closest neighbours (open circles) as well with four

ClO�4 and four Br� ions (filled squares), the positions are

relatively close to each other. The same is true for GERZUY

with one and two CF3SO�3 anions (open circle and filled

square, respectively). The reason for the relatively small effect

of inclusion of the closest neighbours in the case of intramo-

lecular hydrogen bonds is most likely that the hydrogen bond

is more shielded in comparison to the situation in inter-

molecular hydrogen bonds.

5. Summary and general remarks

In all the intermoleclar NHN hydrogen bonds (Figs. 1–6) there

are symmetric double minima in the PES (based on only the

cation in the calculations). In contrast, in the intramolecular

NHN hydrogen bonds (Figs. 7–14) there is only one lowest

minimum; in a few cases there is a second minimum at a

considerably higher energy (Figs. 7, 11, 12 and 14). Although

some of the intramolecular bonds are also short (around

2.6 Å), the occurrence of double minima is evidently not

dependent on the length of the hydrogen bond in these cases.
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Figure 12
(a) GERZUY: 1,7-Diazabicyclo(5.4.3)tetradecane trifluoromethanesulfonate at 182 K; space group P�11 (White et al., 1988). Contour levels as in Fig. 10.
The straight line fitted to the QMRC curve has a slope of �0.98 (the equation of the line is y = �0.98x + 2.63, R2 = 0.99). (b) GERZUY with its two
closest neighbours (CF3SO�3 ). The unfilled circle corresponds to the optimized hydrogen position with one CF3SO�3 ion included in the calculations, the
filled square with two CF3SO�3 ions included.



For all the investigated compounds with intermolecular

hydrogen bonds the QMRC coincides with the BORC, which

is probably a general feature of intermolecular hydrogen

bonds. In this case the proton can be located at all the NH

lengths along the BORC. For intramolecular bonds

(neglecting FEGQOX) only the central part of the QMRC

coincides with the BORC so the proton can be located only

around the hydrogen bridge center. For these complexes it is

then interesting to note that the crystallographically deter-

mined hydrogen positions HXD are not located exactly at the

theoretically calculated potential-energy minima in the PES

diagrams, but instead at the point where the QMRC and the

BORC coincide. This appears to demonstrate the fundamental

role that the principle of conservation of bond order plays in

hydrogen bonds. The optimized hydrogen positions on the

other hand are closer to the energy minima. However, in the

above discussions the large uncertainty in the hydrogen

positions determined by X-rays should be kept in mind.

In the five cases investigated the influence of the anions

appears to be strongest for the intermolecular NHN bonds:

the double minima in LEQHIY and RULFAF (Figs. 5 and 6)

are for instance changed to single minima. This is to be

expected as the hydrogen bond is in general more shielded in

the intramolecular compounds. With the possible exception of
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Figure 13
(a) WERZAU: 1,8-Bis(dimethylamino)naphthalene thiocyanate at 188 K; space group Pbcn (Bartoszak et al., 1994). Contour levels as in Fig. 8. The
straight line fitted to the QMRC curve has a slope of �1.17 (the equation of the line is y = �1.17x + 2.91, R2 = 0.99). (b) WERZAU with the closest
neighbour (SCN�) included in the calculations.



XOMFIO (Fig. 3), the crystallographically determined

hydrogen positions HXD are rather close to the theoretically

calculated potential-energy minima. However, it is very

important to notice that in all the intramolecular complexes

(except XOMFIO) HXD is located at the point where the

QMRC and the BORC coincide! The optimized hydrogen

positions are close to the energy minima in the potential-

energy surfaces. It appears that inclusion of the closest

neighbour(s) in the theoretical calculations has a rather small

effect on the optimized hydrogen positions.

It appears that the potential-energy surface may be a useful

tool to investigate how close the crystallographically deter-

mined hydrogen position is to the calculated energy minimum,

which is determined only by the molecules directly involved in

the bond. If all experimental and theoretical errors are

excluded, the deviation of HXD from the local energy

minimum may be taken as a measure of the influence of the

rest of the environment.

For compounds with intermolecular NHN bonds the

bonding situation is evidently rather flexible so that the

minimum-energy proton-transfer path, QMRC, follows very

closely the BORC curve. The close agreement may seem

rather surprising, considering the very simple assumption in

the derivation of the BORC curve: the sum of the bond orders

is equal to one all along the reaction path. It is notable that in

two theoretically calculated bonds orders the sum is different

from one and it also differs from one type of bond to another.

What is the reason for the agreement between the QMRC

and BORC curves in the case of the intermolecular NHN

bonds, and the disagreement in the intramolecular cases?

Owing to the flexibility in the hydrogen-bond approach in the

intermolecular compounds (Figs. 1–6) all these hydrogen

bonds are linear. Also the Pauling bond-order approach and

accordingly the derivation of the BORC curve are implicitly

based on a linear hydrogen bond.

In the case of intramolecular hydrogen bonds the donor and

acceptor parts of the molecule impose strong constraints on

the N—N distance and accordingly on the geometry of the

NHN bonds and as a consequence the hydrogen bonds cannot

all be linear. The basic assumption in the derivation of the

BORC curves is therefore not valid.
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